
Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice,
Cambridge, UK, 11–15 July 2005

AN IDENTIFICATION PROBLEM ARISING IN THE THEORY OF HEAT
CONDUCTION FOR MATERIALS WITH MEMORY

A. FAVARON
Dipartimento di Matematica “F. Enriques”, Universitá di Milano, Via Saldini 50, 20133 Milano, Italy
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Abstract - We deal with the problem of recovering a memory kernel k(t, η), depending on time t and
on a spatial variable η, in a parabolic integro-differential equation related to a bounded domain Ω ⊂ R3.
We show that, under suitable assumptions and two pieces of additional information, our identification
problem can be uniquely solved locally in time.

1. INTRODUCTION
We deal with an identification problem arising when the classical theory of heat conduction is modified
in order to describe the thermal behaviour of viscoelastic materials such as polymers, polymer solutions
and suspensions (cf. [9]). With respect to metals, the mechanical properties of viscoelastic materials can
be affected by the previous history, that is, by the method of fabrication, post-treatment, and the age of
the finished article. This is why these materials are said to possess memory. Such a memory evinces in
the constitutive relationship between the stress and the strain tensor and leads to mathematical models
of viscoelastic phenomena which take the form of partial differential Volterra equations (cf. [1], [6] and
[10]).

Indeed, if Ω ⊂ R3 is a nonhomogeneous thermal body made of material with memory, then the
variation of the temperature u with respect to time satisfies the following parabolic integro-differential
equation, where the symbol “∗” stands for the convolution operator (v ∗ w)(t) =

∫ t

0
v(t− s)w(s) ds:

Dtu(t, x) = Au(t, x) + div
[(

k(·, ρ(x)) ∗ b̃(x)∇u(·, x)
)
(t)

]
ds + f(t, x) , t > 0, x ∈ Ω. (1)

Here A is a second-order linear differential operator, k represents the memory kernel keeping the history
record of the material, ρ : Ω → R is an assigned function, f represents the system of external heat
sources, b̃(x) denotes a 3× 3 matrix (̃bi,j(x))3i,j=1 and, finally, div =

∑3
i=1 Dxi and ∇ = (Dx1 , Dx2 , Dx3).

In this paper, we will deal with the problem of recovering k in equations of the type of (1). It should
be stressed that the recovery of a memory kernel k depending on both time and space is a quite new
problem, as far as first-order in time integro-differential equations are concerned. See, for instance, [2], [5]
and [7] which, however, have to be considered one-dimensional in character. In [2] the kernel k depends
on time and on only one space variable between the n variables of Rn, n ≥ 2, whereas in [5] and [7]
the kernel is assumed to be degenerate, i.e. of the form k(t, x) =

∑N
j=1 mj(t)µj(x), but with the space-

dependent functions µj , j = 1, . . . , N , assumed to be known, too. As a consequence, the identification
problem reduces to recovering the N unknown time-dependent functions mj , j = 1, . . . , N . Our aims will
be those of generalizing these one-dimensional results, by skipping the assumption of degenerateness and
searching for kernels which depend on both time and space, the spatial dependence occurring through
scalar functions of all the variables at disposal.

We point out that the investigation of time and space dependent memory kernels seems to be very
promising from the point of view of applications. For example, it gives a quite good description of
the thermal behaviour of nonhomogeneous bodies and highlights the existence of unexpected symmetry
relationships, between the analytic properties of kernels and the geometric structure of materials (cf. [3]).

2. FORMULATION OF THE IDENTIFICATION PROBLEM
Our problem is concerned with the identification of the unknown memory kernel k, depending on two
scalar variable t, η, appearing in the following integro-differential equation of parabolic type related to a
bounded domain Ω ⊂ R3, where (t, x) ∈ [0, T ]× Ω:

Dtu(t, x) = Au(t, x) + [k(·, ρ(x)) ∗ Bu(·, x)](t) + [Dηk(·, ρ(x)) ∗ Cu(·, x)](t) + f(t, x) . (2)

Here, A and B are two second-order linear differential operators, while C is a first-order differential
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operator, having respectively the following forms:

A =
3∑

j,k=1

Dxj

(
aj,k(x)Dxk

)
, B =

3∑
j,k=1

Dxj

(
bj,k(x)Dxk

)
, C =

3∑
j=1

cj(x)Dxj
. (3)

In addition, the operator A is uniformly elliptic whereas the function ρ satisfies the following assumptions:

(A) ρ : V → ρ(V ) ⊂ R, where V is an open (possibly unbounded) set of R3 and ρ(V ) = (l1, l2),
−∞ ≤ l1 < l2 ≤ +∞;

(B) if V = V ∪ ∂V denotes the R3–closure of V , then ∂V =
⋃2

i=1 U i where Ui = {x ∈ R3 :
(−1)i lim supy→x, y∈V (−1)iρ(y) = li}, i = 1, 2;

(C) ρ ∈ C1(V ) and ∇ρ(x) 6= 0 for every x ∈ V ;

(D) for any y ∈ ∂V there exist ry > 0 and at least an index j(y) ∈ {1, 2, 3} such that Dxj(y)ρ(z) 6= 0 for

every z ∈ V ∩ (B(y, ry)\U j(y)
y ), where U

j(y)
y is a subset of R3 having three-dimensional Lebesgue

measure equal to zero.

Observe that, in (B), one or both of the U i’s could be empty (for instance if V = R3) or they could
coincide (for instance if ∂V is an hyperplane and V stands on both the sides of ∂V ). Moreover, in (D),
when U

j(y)
y is contained in ∂V we can choose U

j(y)
y = ∅.

However, it is worth saying that assumptions (A)–(C), except for ∇ρ(·) 6= 0 in V and at least when
U1 ∩ U2 = ∅, are close to requiring ρ ∈ C(V ) ∩ C1(V ) and hence are quite natural. On the contrary,
assumption (D) seems a very special one and hard to be satisfied. This is not completely true and,
as a concrete example, we refer to [3, Examples 3.1.2] where it is shown that (A)–(D) are all satisfied
by each one of the spherical coordinates (r, ϕ, θ), related to the Cartesian ones via the relationship
(x1, x2, x3) = r(cos ϕ sin θ, sinϕ sin θ, cos θ).

Coming back to our problem, we restrict our attention to any bounded domain Ω of R3 such that
Ω ⊂ V and such that the boundary ∂Ω is the finite union of m pairwise disjoint surfaces ∂Ωk, k = 1, . . . ,m,
of class C2, i.e. ∂Ω =

⋃m
k=1 ∂Ωk, ∂Ωi ∩ ∂Ωj = ∅ for any i, j = 1, . . . ,m, i 6= j. However, a bounded

domain Ω of R3 satisfying the previous assumptions will be said an admissible domain for our problem
if and only if the function ρ satisfies the following additional property on it:

(E) there exists a constant C̃ such that |∇ρ(x)| ≤ C̃ for every x ∈ Ω ∩ V .

Note that (E) is obvious if Ω ⊂ V , much less if ∂Ω ∩ ∂V 6= ∅. Now, u0 : Ω → R and u1 : [0, T ]× Ω → R
being two assigned smooth functions, we prescribe the initial condition

u(0, x) = u0(x) , ∀x ∈ Ω , (4)

as well as one of the following boundary conditions, where, for any s ∈ {1, . . . ,m}, the indexes ik,
k = 1, . . . , s, satisfy 0 ≤ i1 < . . . < is ≤ m with the convention that ∂Ωi1 = ∅ when i1 = 0:

(D; i1, . . . , is) u(t, x) = u1(t, x) , ∀ (t, x) ∈ [0, T ]×
s⋃

k=1

∂Ωik
, (5)

(N; i1, . . . , is) Dνu(t, x) = Dνu1(t, x) , ∀ (t, x) ∈ [0, T ]× (∂Ω\
s⋃

k=1

∂Ωik
) . (6)

Here ν stands for the conormal vector ν = (ν1, ν2, ν3) being defined by νj(x) =
∑3

k=1 aj,k(x)nk(x), where
n(x) = (n1(x), n2(x), n3(x)) denotes the unit outer normal vector at x ∈ ∂Ω.

Having to deal with the inverse problem of determining both u and k in (2), it seems to be reasonable
to prescribe one more additional information, to be used for reconstructing k, and to hope that only one
may be enough. By the way, this is not the case, since the kernel k we want to recover explicitly depends
on the variables t and η = ρ(x), x ∈ Ω ∩ V , and therefore the problem is two-dimensional in character.
Indeed, by setting {

l3 = infx∈Ω∩V {lim infy→x, y∈Ω∩V ρ(y)} ,

l4 = supx∈Ω∩V {lim supy→x, y∈Ω∩V ρ(y)} ,
(7)
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fixing η0 ∈ [l3, l4] and assuming k(t, η) differentiable with respect to η, from the fundamental formula of
Integral Calculus we get

k(t, η) = h(t) +
∫ η

η0

q(t, ξ) dξ =: h(t) + Eq(t, η) , ∀ (t, η) ∈ [0, T ]× (l3, l4), (8)

where h and q denote the new unknown functions

h(t) = k(t, η0) , q(t, η) = Dηk(t, η) . (9)

Consequently, recovering k is equivalent to recovering h and q and, as we will see further, the original
problem of identifying the pair (u, k) in equation (2) can be reformulated as an equivalent one related
to the triplet (v, h, q) where v = Dtu − Dtu1. Hence, it clearly appears that one additional piece of
information does not suffice to solve our identification problem, and, by virtue of decomposition (8), at
least two additional measurements have to be available. Therefore, we assume also to be given the two
following additional pieces of information

Φ[u(t, ·)](η) := g1(t, η) , ∀ (t, η) ∈ [0, T ]× (l3, l4) , (10)

Ψ[u(t, ·)] := g2(t) , ∀ t ∈ [0, T ] , (11)

where Φ, Ψ and gi, i = 1, 2, are, respectively, given linear operators acting on spatial variables and
smooth prescribed functions.

By writing ω = ω(·) when this shortening does not generate any confusion, from (4)–(6), (10), (11)
we (formally) deduce that our data have to satisfy also the following consistency conditions

(C1,D,N) u0 = u1(0, ·) on ΓD and Dνu0 = Dνu1(0, ·) on ΓN (12)

Φ[u0](η) = g1(0, η) , Ψ[u0] = g2(0) , (13)

ΓD and ΓN in (12) denoting, respectively, those parts of the boundary of Ω where Dirichlet and Neumann
conditions are possibly prescribed.

Convention: From now on, when Ω is an admissible domain, we will denote by P(D,N) the identification
problem consisting of (2), (4), the boundary conditions (5), (6) and the additional pieces of information
(10), (11).

3. MAIN ASSUMPTIONS AND BASIC SYSTEM
Since we are interested in an existence and uniqueness result to the identification problem P(D,N), the
working technique seems to be that of reformulating our problem in a Banach space framework and then
to apply a fixed-point argument to such a problem (cf. [2]).

To perform this procedure, we first rewrite our problem for the pair (u, k) in an equivalent one for
the triplet (v, h, q), where h and q are defined by (9) whereas v is defined via the following formula

v := Dtu−Dtu1 ⇐⇒ u(t, x) = u1(t, x)− u1(0, x) + u0(x) +
∫ t

0

v(s, x) ds , (14)

u0 and u1 being, respectively, the prescribed initial and boundary data (4)–(6).
To obtain the basic system for the triplet (v, h, q) we need some further assumptions, additional to the

linearity, for the operators Φ and Ψ appearing in (10) and (11). We now list the essential ones. Let Ξ be
the set of spatial variables on which Φ acts and let v1 : (l3, l4) → R, v2 : Ω → R and v3 : (l3, l4)×Ξ → R
be three functions for which at the moment we do not require any other regularity but that v3 admits
(generalized) derivative with respect to η ∈ (l3, l4). Then the following relations hold:

Φ[v1v2] = v1Φ[v2] , DηΦ[v3](η) = Φ[Dηv3](η), ∀ η ∈ (l3, l4). (15)

It occurs that (15) is not sufficient and we need also the two basic decomposition formulae

ΦA = A1Φ + Φ1 , ΨA = Ψ1 , (16)

where Φ1 and Ψ1 are two linear operators and A1 is a differential operator A1(η;Dη).
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Further, we assume that u0 satisfies the following conditions for some positive constant m0:

J0(u0)(η) :=
∣∣Φ[Cu0](η)

∣∣ ≥ m0 , ∀ η ∈ (l3, l4), (17)

J1(u0) := Ψ[J(u0)] 6= 0 , (18)

where we have set:

J(u0)(x) :=
(
Bu0(x)− Φ[Bu0](ρ(x))

Φ[Cu0](ρ(x))
Cu0(x)

)
exp

[ ∫ η0

ρ(x)

Φ[Bu0](ξ)
Φ[Cu0](ξ)

dξ
]
, ∀x ∈ Ω .

Now, let us suppose that the pair (u, k) is a solution to the identification problem P(D,N) such that u
is twice differentiable with respect to time and k is once differentiable with respect to η. Replacing k in
(2) with the right-hand side of (8) and differentiating the so obtained equation with respect to time, we
deduce that the triplet (v, h, q) satisfies the following identity for any (t, x) ∈ [0, T ]× Ω:

Dtv(t, x) = Av(t, x) +
([

h(·) + Eq(·, ρ(x))
]
∗

[
Bv(·, x) + BDtu1(·, x)

])
(t)

+
[
h(t) + Eq(t, ρ(x))

]
Bu0(x) +

(
q(·, ρ(x)) ∗

[
Cv(·, x) + CDtu1(·, x)

])
(t)

+ q(t, ρ(x))Cu0(x) + (A−Dt)Dtu1(t, x) + Dtf(t, x) . (19)

Moreover, evaluating (2) in t = 0 and taking advantage of (4) we deduce that v satisfies the initial
condition

v(0, x) = Au0(x) + f(0, x)−Dtu1(0, x) =: v0(x) , ∀x ∈ Ω , (20)

whereas, concerning the boundary values, from (14) and (5), (6) we get

v(t, ·) = Dνv(t, ·) = 0 , on ∂Ω , ∀ t ∈ [0, T ]. (21)

Finally, since Φ and Ψ act on spatial variables, only, they commute with the derivative with respect to
time Dt. Consequently, from (10) and (11) we get

Φ[v(t, ·)](η) = Dtg1(t, η)− Φ[Dtu1(t, ·)](η) , ∀ (t, η) ∈ [0, T ]× (l3, l4) , (22)

Ψ[v(t, ·)] = Dtg2(t)−Ψ[Dtu1(t, ·)] , ∀ t ∈ [0, T ]. (23)

Now, the consistency conditions related to problem (19)–(23) are explicitly given by:

(C2,D,N) v0 = 0 on ΓD and Dνv0 = 0 on ΓN (24)

Φ[v0](η) = Dtg1(0, η)− Φ[Dtu1(0, ·)](η) , Ψ[v0] = Dtg2(0)−Ψ[Dtu1(0, ·)] , (25)

Having derived the fundamental equations for v, we now turn our attention to h and q. Applying Φ
and Ψ to both sides of (19) and taking advantage of (15) and (16), it is easy to check that, for any
(t, η) ∈ [0, T ]× (l3, l4), the following equations hold true:

q(t, η)Φ[Cu0](η) + Eq(t, η)Φ[Bu0](η) = N0
1 (u1, g1, f)(t, η) + Φ[N1(v, h, q)(t, ·)](η)

−Φ1[v(t, ·)](η)− h(t)Φ[Bu0](η) , (26)

Ψ[q(t, ·)Cu0 + Eq(t, ·)Bu0] = N0
2 (u1, g2, f)(t) + Ψ[N1(v, h, q)(t, ·)]

−Ψ1[v(t, ·)]− h(t)Ψ[Bu0]. (27)

where, for any (t, η, x) ∈ [0, T ] × (l3, l4) × Ω, operators N0
1 , N0

2 and N1 are defined, respectively, by
formulae (3.2.19), (3.2.20) in [3] and

N1(v, h, q)(t, x) = −
([

h(·) + Eq(·, ρ(x))
]
∗

[
Bv(·, x) + BDtu1(·, x)

])
(t)

+
(
q(·, ρ(x)) ∗

[
Cv(·, x) + CDtu1(·, x)

])
(t). (28)
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Remark 3.1. Now, suppose that the triplet (v, h, q) solves the identification problem (19)–(23), (26)
and (27). Then, performing integrations with respect to time and taking advantage of the consistency
conditions (12), (13), it is easy to show that the pair (u, k), related to (v, h, q) by (9) and (14), solves our
original problem P(D,N). Hence, problem P(D,N) and problem (19)–(23), (26), (27) are equivalent.

Now, due to (8), to determine k(t, ·) for any t ∈ [0, T ] we have to solve system (26), (27) for h and q.
This part involves a lot of definition that will probably takes out of our purposes. Therefore, for brevity,
here we limit ourselves to refer the reader to [3, Section 3.2] and to recall only that the pair (h, q) solves
the following fixed-point equations:

h(t) = h0(t) + N3(v, h, q)(t), (29)

q(t, η) = q0(t, η) + J2(u0)(η)N3(v, h, q)(t) + N2(v, h, q)(t, η). (30)

Here h0 and q0 are defined, respectively, by formulae (3.2.38) and (3.2.42) in [3] whereas

N2(v, h, q)(t, η) = J3(u0)
{
Φ[N1(v, h, q)(t, ·)](η)− Φ1[v(t, ·)](η)

}
,

N3(v, h, q)(t) := [J1(u0)]−1
{

Ψ[N1(v, h, q)(t, ·)]−Ψ[N2(v, h, q)(t, ·)Cu0]

+Ψ[E
(
N2(v, h, q)(t, ·)

)
Bu0]−Ψ1[v(t, ·)]

}
,

J2(u0)(η) := −Φ[Bu0](η)
Φ[Cu0](η)

exp
[ ∫ η0

η

Φ[Bu0](ξ)
Φ[Cu0](ξ)

dξ
]
,

the linear operator J3(u0) appearing in N2 being that defined by formula (3.2.30) in [3]. We can now
summarize the result of this section in the following equivalence theorem.

Theorem 3.2. The pair (u, k) is a solution to the identification problem P(D,N) if and only if the triplet
(v, h, q) defined by (9) and (14) solves the problem (19)–(23), (29), (30).

4. AN ABSTRACT REFORMULATION OF THE PROBLEM (19)–(23), (29), (30)
Starting from the result of Section 3, we now reformulate our identification problem in a Banach space
framework. Let X be a complex Banach space with norm ‖ · ‖X and let A : D(A) ⊂ X → X be a linear
operator, with a non–necessarily dense domain, satisfying the following assumption:

(H1) The resolvent ρ(A) of A contains the half-plane S0 = {λ ∈ C : Reλ ≥ 0} and there exists M0 > 0
such that ‖(zI −A)−1‖L(X) ≤ M0|1 + z|−1 for every z ∈ S0.

As it is well-known, assumption (H1) implies that A generates an analytic semigroup {etA}t≥0 satisfying
the estimates ‖AketA‖L(X) ≤ c̃kt−k, t > 0, k ∈ N ∪ {0}. Moreover, from now on, we denote by X1/2 the
intermediate space DA(1/2, p), p ∈ [1,+∞] between D(A) and X (cf. [8]).

In order to reformulate in an abstract form the problem (19)–(23), (29), (30) we need the following
list of assumptions involving spaces, operators and data, where 0 < β < α < 1/2 and q̃0 is defined in
Remark 3.3.3 in [3]:

(H2) Y , Y1, D(B), D(C) are Banach spaces such that Y1 ↪→ Y and D(A) ↪→ D(B) ↪→
D(C) ↪→ X, X1/2 ↪→ D(C);

(H3) B : D(B) → X and C : D(C) → X are linear operators such that BA−1 ∈ L(X)

and CA−1 ∈ L(X;D(C));

(H4) E ∈ L(Y ;Y1), Φ ∈ L(X;Y ), Φ1 ∈ L(D(C);Y ), Ψ ∈ X∗, Ψ1 ∈ D(C)∗;

(H5) M is a continuous bilinear operator from Y ×D(C) to X and from Y1 ×X to X;

(H6) J1 : D(B) → R, J2 : D(B) → Y , J3 : D(B) → L(Y ), are three prescribed
(nonlinear) operators;
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(H7) u0 ∈ D(B), Cu0 ∈ D(C), J1(u0) 6= 0, Bu0 ∈ DA(α, +∞);

(H8) v0 ∈ D(A), h0 ∈ Cβ([0, T ];R), q0 ∈ Cβ([0, T ];Y ) ;

(H9) z0 ∈ Cβ([0, T ];X), z1 ∈ Cβ([0, T ];D(C)), z2 ∈ Cβ([0, T ];X) ;

(H10) Av0 +M(q̃0, Cu0)−M(Eq̃0, Bu0) + z2(0, ·) ∈ DA(β, +∞) ;

Now (cf. (19)), denoting by K the convolution operator K(χ, κ)(t) :=
∫ t

0
M

(
χ(t − s), κ(s)

)
ds, our

direct problem depending on the pair of parameter (h, q), is the following: determine a function v ∈
C1([0, T ];X) ∩ C([0, T ];D(A)) satisfying

v′(t) = [λ0I + A]v(t) + [h ∗ (Bv + z0)](t)−K(Eq,Bv + z0)(t) +M(q(t), Cu0)

+ h(t)Bu0 +K(q, Cv + z1)(t)−M(Eq(t), Bu0) + z2(t), ∀ t ∈ [0, T ],

v(0) = v0 .

(31)

Remark 4.1. In the explicit case (19), we have A = A − λ0I, with a large enough positive λ0, and
z0 = BDtu1, z1 = CDtu1, z2 = (A−Dt)Dtu1 + Dtf . Instead, functions v0, h0 and q0 in (H8) are those
appearing, respectively, in (20), (29) and (30).

We now introduce the following unknown function w:

w = Av ⇐⇒ v = A−1w .

Hence, applying A to the Volterra operator equation equivalent to problem (31), we obtain that w solves
the equation

w = w0 + R1(w, h, q) + S1(q) , (32)

where we have set

w0 := AetAv0 + A(etA ∗ z2) ,

R1(w, h, q) := λ0(etA ∗ w) + A[etA ∗ h ∗ (BA−1w + z0)] + A(h ∗ etABu0)

−A[etA ∗ K(Eq, BA−1w + z0)] + A[etA ∗ K(q, CA−1w + z1)] ,

S1(q) := A[etA ∗ (M(q, Cu0)−M(Eq,Bu0))] .

Now we rewrite the fixed-point system (29), (30) in an abstract form. For this purpose we introduce the
operators:

R2(w, h, q) := −J̃1(u0)
{
Ψ

[
M(J3(u0)Φ[N1(A−1w, h, q)], Cu0)−N1(A−1w, h, q)

−M(EJ3(u0)Φ[N1(A−1w, h, q)], Bu0)
]}

,

R3(w, h, q) := J2(u0)R2(w, h, q) + J3(u0)Φ[N1(A−1w, h, q)],

S2(w) := J̃1(u0)
{
Ψ

[
M(J3(u0)Φ1[A−1w], Cu0)−M(EJ3(u0)Φ1[A−1w], Bu0)

]
−Ψ1[A−1w]

}
,

S3(w) := J2(u0)S2(w)− J3(u0)Φ1[A−1w],

where (cf. (H7) and (28)) we have set J̃1(u0) = [J1(u0)]−1 and

N1(A−1w, h, q) = −h ∗ (BA−1w + z0) +K(Eq,BA−1w + z0)−K(q, CA−1w + z1) .

Then, the fixed-point system for h and q can be rewritten in the following more compact form:

h = h0 + R2(w, h, q) + S2(w) , q = q0 + R3(w, h, q) + S3(w) . (33)

h0 and q0 being the elements appearing in (H8). Now, the fixed-point system (32) and (33) coincide with
that in Section 5 of [2]. Therefore, referring the reader to Section 6 of [2] for the proof, we can state the
following local in time existence and uniqueness result.
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Theorem 4.2. Under assumptions (H1)–(H10) there exists T ∗ ∈ (0, T ) such that for any τ ∈ (0, T ∗] the
fixed-point system (32), (33) has a unique solution (w, h, q) ∈ Cβ([0, τ ];X)×Cβ([0, τ ];R)×Cβ([0, τ ];Y ).

Corollary 4.3. Under assumptions (H1)–(H10) there exists T ∗ ∈ (0, T ) such that for any τ ∈ (0, T ∗] the
problem (31), (33) admits a unique solution (v, h, q) ∈

[
C1+β([0, τ ];X)∩Cβ([0, τ ];D(A))

]
×Cβ([0, τ ];R)×

Cβ([0, τ ];Y ).

5. APPLICATION OF THE ABSTRACT RESULT TO P(D,N)
In this section, taking advantage of the equivalence Theorem 3.2 and the abstract Corollary 4.3, we solve
(locally in time) the identification problem P(D,N), at least with the convention to work in the framework
of Sobolev spaces related to Lp(Ω) with

p ∈ (3,+∞) . (34)

We start by listing our main requirements on the operators Φ and Ψ. They are the same as in Section 3,
but here we rewrite them in a more formal way, making clear the minimal space regularity required for
the functions vj , j = 1, 2, 3, and the operators Φ1, Ψ1 appearing on (15) and (16), respectively. Recalling
that Ξ is the set of spatial variables on which Φ acts and taking into account (7), we assume:

Φ ∈ L(Lp(Ω);Lp(l3, l4)) , Ψ ∈ Lp(Ω)∗ , (35)

Φ[v1v2] = v1Φ[v2] , ∀ (v1, v2) ∈ Lp(l3, l4)× Lp(Ω) , (36)

DηΦ[v3](η) = Φ[Dηv3](η) , ∀ v3 ∈ W 1,p((l3, l4)× Ξ) and η ∈ (l3, l4) , (37)

ΦA = A1Φ + Φ1 on W 2,p
D,N(Ω) , Φ1 ∈ L(W 1,p(Ω);Lp(l3, l4)) , (38)

ΨA = Ψ1 on W 2,p
D,N(Ω) , Ψ1 ∈ W 1,p(Ω)∗ , (39)

where A1 is a second-order differential operator A1 = A1(Dη) and W k,s
D,N(Ω), k ∈ N, s ∈ [1,+∞], denote

the space of function ω ∈ W k,s(Ω) satisfying the homogeneous condition (D,N).
To state our result concerning the identification problem P(D,N) we need to list also the following

assumptions on the data f , uj , gk, j = 0, 1, k = 1, 2:

f ∈ C1+β([0, T ];Lp(Ω)) , f(0, ·) ∈ W 2,p(Ω) , (40)

u1 ∈ C2+β([0, T ];Lp(Ω)) ∩ C1+β([0, T ];W 2,p(Ω)) , (41)

u0 ∈ W 4,p(Ω) , v0 ∈ W 2,p
D,N(Ω) , Bu0 ∈ W 2α,p

D,N (Ω) , (42)

F := k′0Cu0 + k0Bu0 +Av0 + (A−Dt)Dtu1(0, ·) + Dtf(0, ·) ∈ W 2β,p
D,N (Ω) , (43)

g1 ∈ C2+β([0, T ];Lp(l3, l4)) ∩ C1+β([0, T ];W 2,p(l3, l4)) , (44)

A1Dtg1 ∈ Cβ([0, T ];Lp(l3, l4)), (45)

g2 ∈ C2+β([0, T ];R) , (46)

where 0 < β < α < 1/2, α, β 6= 1/(2p), and functions v0 and k0 appearing in (42) and (43) are defined,
respectively, by formulae (20) and (3.18) in [4] (with the triplet (r, R2, η) being replaced by (η, η0, σ)).
Here the spaces W 2γ,p

D,N (Ω) ≡ (Lp(Ω),W 2,p
D,N(Ω))γ,p, γ ∈ (0, 1/2]\{1/(2p)}, are interpolation spaces between

W 2,p
D,N(Ω) and Lp(Ω) and they are defined (cf. [11, Section 4.3.3]) by:

W 2γ,p
D,N (Ω) =


W 2γ,p(Ω) , if 0 < γ < 1/(2p) ,

{u ∈ W 2γ,p(Ω) : u = 0 on ΓD} , if 1/(2p) < γ ≤ 1/2 ,

W 2γ,p(Ω) , if 0 < γ ≤ 1/2 and ΓD = ∅ .

(47)

Further, we introduce the Banach spaces Us,β,p(T ), s ∈ N\{0}, defined by

Us,β,p(T ) = Cs+β([0, T ];Lp(Ω)) ∩ Cs−1+β([0, T ];W 2,p(Ω)) . (48)
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Analogously, replacing W 2,p(Ω) with W 2,p
D,N(Ω) in (48), we define spaces Us,β,p

D,N (T ).
Finally, we assume that the coefficients of operators A, B, C satisfy the following properties:

ai,j ∈ W 2,∞(Ω), ai,j = aj,i , bi,j , ci ∈ W 1,∞(Ω) , i, j = 1, 2, 3 . (49)

We can now state the main result of the section.

Theorem 5.1. Let assumptions (3), (49), (34)–(39) be fulfilled and assume the function ρ satisfies the
assumptions (A)–(E) of Section 2. Moreover, let the data vector (u0, u1, g1, g2, f) satisfies assumptions
(40)–(46), inequalities (17), (18) and consistency conditions (12), (13), as well as (24), (25).

Then, there exists T ∗ ∈ (0, T ] such that the identification problem P(D,N) admits a unique solution
(u, k) ∈ U2,β,p(T ∗)×Cβ([0, T ∗];W 1,p(l3, l4)) depending continuously on the data with respect to the norms
related to the Banach spaces in (40)–(46).

To prove Theorem 5.1 we take advantage of the equivalence result of Section 3. Indeed, in the space
framework above defined, Theorem 3.2 reads as follows.

Theorem 5.2. The pair (u, k) ∈ U2,β,p(T ∗) × Cβ([0, T ∗];W 1,p(l3, l4)) is a solution to the identifica-
tion problem P(D,N) if and only if the triplet (v, h, q) defined by (9) and (14) belongs to U1,β,p

D,N (T ∗) ×
Cβ([0, T ∗];R)× Cβ([0, T ∗];Lp(l3, l4)) and solves the problem (19)–(23), (29), (30).

Consequently, it suffices to prove the following theorem, because then Theorem 5.1 trivially follows
from Theorem 5.2.

Theorem 5.3. Let the assumptions of Theorem 5.2 be fulfilled. Then, the identification problem (19)–
(23), (29), (30) admits a unique solution (v, h, q) ∈ U1,p

D,N(T ∗) × Cβ([0, T ∗];R) × Cβ([0, T ∗];Lp(l3, l4))
depending continuously on the data with respect to the norms related to the Banach spaces in (40)–(46).

In order to prove Theorem 5.3 a preliminary result is needed. It deals with an estimate which, in the
proof of Theorem 5.3, will allow us to prove assumption (H5) for the bilinear operator:

M :

{
Lp(l3, l4)×W 1,p(Ω)
W 1,p(l3, l4)× Lp(Ω)

−→ Lp(Ω) , M(q, w)(x) = q(ρ(x))w(x) , x ∈ Ω .

Lemma 5.4. Let Ω ⊂ R3 be a bounded domain satisfying the assumptions of Section 2 and let ρ be
a function satisfying the assumptions (A)–(E) of the same section. Then, for every s ∈ [1,+∞), the
following estimate holds

‖g ◦ ρ‖Ls(Ω) ≤ C1(ρ,Ω)‖g‖Ls(l3,l4) , ∀ g ∈ Ls(l3, l4) , (50)

where C1(ρ,Ω) is a positive constant depending on ρ and Ω, only.

Proof. By recalling Ω ⊂ V , we set Ω1 = Ω\∂V and Ω2 = Ω ∩ ∂V , so that Ω1 ⊂ V , Ω2 ⊂ ∂V and
Ω = Ω1 ∪ Ω2. Now, since |∇ρ(·)| is positive in V , for every y ∈ Ω1 there exists k = k(y) ∈ {1, 2, 3}
such that Dxk

ρ(y) 6= 0. According to this, for every y ∈ Ω1, we denote by i(y) the minimum index
k ∈ {1, 2, 3} such that Dyk

ρ(y) 6= 0 and by B
i(y)
y the ball B(y, ry), ry > 0, such that Dxi(y)ρ(z) 6= 0 for

every z ∈ B(y, ry). This is possible since Ω1 ⊂ V and V is open. Hence, at least by taking sufficiently
small ry, the ball B

i(y)
y is well defined. Similarly (cf. (D)), for every y ∈ Ω2 there exist ry > 0,

i(y) = min{1, 2, 3} and a subset U
i(y)
y of R3 having zero three-dimensional Lebesgue measure such that

Dxi(y)ρ(z) 6= 0 for every z ∈ B(y, ry)\U i(y)
y . Denoting with B̃

i(y)
y the ball B(y, ry), y ∈ ∂V , such that

(D) is satisfied, it follows that the collection {Bi(y)
y }y∈Ω1 and {B̃i(y)

y }y∈Ω2 cover Ω1\
⋃

y∈Ω2
B̃

i(y)
y and Ω2,

respectively. As a consequence

Ω = Ω1 ∪ Ω2 ⊂
( ⋃

y∈Ω1

Bi(y)
y

)
∪

( ⋃
y∈Ω2

B̃i(y)
y

)
,

and hence, via a compactness argument, we find y1, . . . , yn1 ∈ Ω1, yn1+1, . . . , yn1+n2 ∈ Ω2, nj ∈ N,
j = 1, 2, such that:

Ω ⊂
[( n1⋃

j=1

Bi(yj)
yj

)
∪

( n2⋃
k=1

B̃
i(yn1+k)
yn1+k

)]
. (51)
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Now, for ν = 1, 2, 3, j = 1, . . . , n1, k = 1, . . . , n2, we set Bν =
⋃

i(yj)=ν B
i(yj)
yj , B̃ν =

⋃
i(yn1+k)=ν B̃

i(yn1+k)
yn1+k ,

so that (51) can be rewritten as

Ω ⊂
[( 3⋃

ν=1

Bν
)
∪

( 3⋃
ν=1

B̃ν
)]

. (52)

From the definition of Bk
y , y ∈ Ω1, and B̃k

y , y ∈ Ω2, k ∈ {1, 2, 3}, for any fixed ν ∈ {1, 2, 3} we have

Dxν
ρ(z) 6= 0 for every z ∈ B

ν ∪ (B̃ν\
⋂

i(yn1+k)=ν, k=1,...,n2
U

i(yn1+k)
yn1+k ), where U

i(yn1+k)
yn1+k is the subset of

three-dimensional Lebesgue measure equal to zero appearing on (D) and related to yn1+k, k = 1, . . . , l2.
In particular, the last assertion follows from the inclusion

n0⋃
j=1

(Aj\Bj) ⊂
( n0⋃

j=1

Aj

)
\
( n0⋂

j=1

Bj

)
,

which is satisfied for any collection of sets {Aj}n0
j=1 and {Bj}n0

j=1, n0 ∈ N.
For the sake of brevity, from now on, for every ν = 1, 2, 3, we denote by Uν the subset (of three-

dimensional Lebesgue measure equal to zero)
⋂

i(yn1+k)=ν, k=1,...,n2
U

i(yn1+k)
yn1+k . Therefore, for every g ∈

Ls(l3, l4), from (52) we get

‖g ◦ ρ‖s
Ls(Ω) ≤

3∑
ν=1

(
‖g ◦ ρ‖s

Ls(Ω∩Bν) + ‖g ◦ ρ‖s
Ls(Ω∩ eBν)

)
=

3∑
ν=1

(
‖g ◦ ρ‖s

Ls(Ω∩Bν) + ‖g ◦ ρ‖s
Ls(Ω∩( eBν\Uν))

)
. (53)

Let now ν ∈ {1, 2, 3} be fixed and, for j, k ∈ {1, 2, 3}\{ν}, j 6= k, consider the change of variables F ν :
(xν , xj , xk) → (ξν , ξj , ξk), where (xν , xj , xk) ∈ Ω∩(Bν∪(B̃ν\Uν)) and (ξν , ξj , ξk) = (ρ(xν , xj , xk), xj , xk).
Since Dxν

ρ(z) 6= 0 for every z ∈ Bν ∪ (B̃ν\Uν), from the inverse function theorem we get (xν , xj , xk) =
(λν(ξν , ξj , ξk), ξj , ξk) =: Gν(ξ1, ξ2, ξ3) for every (ξν , ξj , ξk) ∈ F ν(Ω ∩ (Bν ∪ (B̃ν\Uν))). Of course, the
set F ν(Ω ∩ (Bν ∪ (B̃ν\Uν))) is not easily characterized, but we can surely say that it is contained in
[l3, l4]×Πj,k(Ω), where Πj,k(Ω), j, k = 1, 2, 3, j 6= k, denotes the continuous projection of Ω on the plane
xjxk acting in the following way:

Πj,k(xν , xj , xk) = (0, xj , xk) .

In particular, Ω being compact, Πj,k(Ω), j, k = 1, 2, 3, is a compact (and hence measurable) subset of R2

having two-dimensional Lebesgue measure m2(Πj,k(Ω)) bounded from above by m2(Πj,k(Q)), Q being any
three-dimensional cube containing Ω. Therefore, denoting by A(l) the set Πj,k({x ∈ Ω ∩ V : ρ(x) = l}),
l ∈ [l3, l4], A(l) turns out to be a compact subset of Πj,k(Ω), since the level set {x ∈ Ω ∩ V : ρ(x) = l},
l ∈ [l3, l4], is compact and Πj,k is a continuous map. As a consequence A(l), l ∈ [l3, l4], is a two-
dimensional Lebesgue measurable subset of Πj,k(Ω) and hence, using (E) and denoting by JF ν the
Jacobian of F ν , from Fubini’s theorem we get

‖g ◦ ρ‖s
Ls(Ω∩Bν) + ‖g ◦ ρ‖s

Ls(Ω∩( eBν\Uν))

=
∫ l4

l3

|g(ξν)|s dξν

∫
A(ξν)

|detJF ν(Gν(ξν , ξj , ξk))|dξj dξk ≤ C̃m2(A(ξν))‖g‖s
Ls(l3,l4)

≤ C̃m2(Πj,k(Ω))‖g‖s
Ls(l3,l4)

, ∀ g ∈ Ls(l3, l4) . (54)

Now, since ν was any index belonging to {1, 2, 3}, by replacing (54) in (53) and summing up on ν we
obtain (50). The proof is complete.

With the Lemma 5.4 at hand, we can now prove Theorem 5.3.

Proof of Theorem 5.3. First, for any p ∈ (3,+∞) let us choose the Banach spaces X, X1/2, D(A), D(B),
D(C), Y and Y1 according to the rule

X = Lp(Ω), X1/2 = W 1,p
D,N(Ω),

D(A) = W 2,p
D,N(Ω), D(B) = W 2,p(Ω), D(C) = W 1,p(Ω),

Y = Lp(l3, l4), Y1 = W 1,p(l3, l4),

(55)
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where the spaces W 1,p
D,N(Ω) are defined by (47) with γ = 1/2. Then, A, B, C being defined by (3) and

λ0 being a large enough (fixed) positive constant, we define the operators A, B, C with domains D(A),
D(B), D(C) as follows

Au = (A− λ0I)u, u ∈ D(A) ; Bu = Bu, u ∈ D(B) ; Cu = Cu, u ∈ D(C) . (56)

(55) and (56) ensure that (H2) is satisfied, since (cf. [8]) X1/2 = (X,D(A))1/2,p = DA(1/2, p). For
the brevity’s sake, we refer to [3, pagg. 87–90] for the proof that (H1), (H3), (H4) and (H6)–(H10)
are satisfied, and, instead, we turn our attention to (H5) where Lemma 5.4 plays a fundamental role.
Indeed, to show that M is a continuous bilinear operator from Lp(l3, l4) ×W 1,p(Ω) to Lp(Ω) and from
W 1,p(l3, l4)×Lp(Ω) to Lp(Ω) we proceed as follows. First, using Lemma 5.4 and the Sobolev embedding
W 1,p(Ω) ↪→ C1−3/p(Ω), p ∈ (3,+∞), for every pair (q, w) ∈ Lp(l3, l4)×W 1,p(Ω) we find:

‖M(q, w)‖Lp(Ω) ≤ ‖q ◦ ρ‖Lp(Ω)‖w‖C(Ω) ≤ C3(ρ,Ω, p)‖q‖Lp(l3,l4)‖w‖W 1,p(Ω) ,

where the positive constant C3(ρ,Ω, p) depends on ρ, Ω and p, only, and is given by the product of the
constant C1(ρ,Ω) in (50) with the constant C2(p, Ω) such that ‖w‖C(Ω) ≤ C2(p, Ω)‖w‖W 1,p(Ω). Similarly,
using W 1,p(l3, l4) ↪→ C1−1/p([l3, l4]), p ≥ 1, for any pair (q, w) ∈ W 1,p(l3, l4)× Lp(Ω) we get:

‖M(q, w)‖Lp(Ω) ≤ C4(p, Ω)‖q‖W 1,p(l3,l4)‖w‖Lp(Ω) .

Hence, the bilinearity of M being obvious, we have that assumption (H5) is satisfied.
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